🌐 thebe_01.html
✒️ Cell #1
sage: var('t'); n=3; d={2*i+1:[2*i+2] for i in [0..6]}
sage: c=[colormaps.ocean(24*k)[:3] for k in [0..10]]
sage: p=polar_plot([(t+k/n)*log(t/n) for k in [0..10]],
sage: 0,n*pi,color=c,fill=d,fillcolor=c)
sage: ti=r'$f=(t+k/%d)'%n+' \cdot \log(t/%d)'%n+', k \in \{0,1,...,10\}$'
sage: p.show(title=ti,fontsize=12,figsize=5)
✒️ Cell #2
sage: @interact
sage: def _(a=[7,9,..,17],b=[10,12,..,20]):
sage: x(t)=cos(t)+cos(a*t)/2+sin((a+b)*t)/3
sage: y(t)=sin(t)+sin(a*t)/2+cos((a+b)*t)/3
sage: def col(c): return colormaps.hsv(5*c)[:3]
sage: p=sum([parametric_plot((x,y),(t,(i-1)*pi/24,i*pi/24),
sage: color=col(i)) for i in [1..48]])
sage: p.show(aspect_ratio=1,figsize=7,gridlines=True)
✒️ Cell #3
sage: %%r
sage: elements<-c('☜','☞','☝︎','☟')
sage: n<-length(elements)
sage: S<-unique(t(sapply(1:10^3,function(x) sample(elements,n))))
sage: S<-apply(S,1,function(x) paste0(x,collapse=''))
sage: print(length(S)==factorial(4)); S
No comments:
Post a Comment